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ABSTRACT

The purpose of this paper is to compare analytically the properties
of the suboptimal dual adaptive stochastic control algorithm when the
plant dynamics contain multiplicative white noise parameters. A simple
scaler example is used for this analysis.
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l. INTRODUCTION

Most stochast ic optimal control problems are not amenable to a solution

through the stochastic dynamic programming equation. Thi s is so because

of the “curse of dimensional ity.” The need , therefore, naturally arises

for subopt imal. algorithms. Those suboptimal algorithms should, however,

share desirabl e qualitative features with the optimal controls. The study

of simple examples of discrete-t ime linear systems with quadratic cost

and multiplicative noise indicates two consequences of parameter uncertainty

on the optimal control Law. On the one hand , the presence of uncertainty

in the parameter has a stimulating action on the control because a control

exercised at a given time can improve the accuracy of future parameter

estimates. This effect has been called loosely the probing effect of the

control. On the other hand, the presence of uncertainty which cannot be

reduced by the control has an inhibitory, loosely called the caution,

effect of the control; the larger those irreducible uncertainties, the

more attenuated the control. should be. None of these consequences of

uncertainties, the so-called dual effect, are captured by the naive

“certainty equivalent” (CE) control law, which is obtained by setting all

random parameters to their a priori mean values and treating the system

as deterministic.

In the more general cases, wide-sense dual. adaptive algorithms have

been suggested ([11 , (2 ] , ( 3 ) ) .  The crux of those adaptive algorithms is

to approximate the cost-to-go in the dynamic programming equation by

expanding it about a nominal trajectory to second-order termB in

perturbations resulting from random disturbances. The resulting cost ,

called the dual cost , is minimized to yield the subopt imal control at the
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corresponding time stage. It has been observed by simulations [2] , [5]

that the algorithms displayed the desirable caution and probing features.

Moreover, it has been claimed (5] that the dual cost could be decomposed in

a sum of terms which account respectively for the caution effect , the

probing effect and the deterministic pert of the cost .

In general , however, it is impossible to compare such dual control laws

with the optimal one, which is unknown , in the case of ...constant hut unknown

parameters. We consider here a different special case of a scalar , discrete—

time linear system with white multiplicative gaussian noise and perfectly

observed state. The op-~~~al control law of such systems, for a quadratic

performance index , is known (4],  (71 . We show that , in that special case ,

it is possible to explicitly derive the dual cost and the dual. ôontrol in

closed form , when the length of the planning horizon goes to infinity.

The dual. cost on an infinite horizon is always finite, provided a simple

controllability and positive definiteness assumption holds. This is a

qualitative difference with respect to the optimal cost , which has been

shown (4] to be inf inite on an inf inite horizon, unless some inequality

is satisfied by the covariances; that property has been referred to as the

uncertainty threshold principle. Thus, the dual control fails to exhibit

that property .

Some valuable insight can be obtained , since we show that the asymptotic

(i.e., infinite horizon) dual control law is in fact equivalent to a first-

• order expansion of the optimal control . law for systems with white parameters T
‘ ‘ c__ i

as a function of the parameter covariances , about tim nominal value of null :-n 
0

o~parameter covariances, which corresponds to a deterministic problem. Since

the certainty-equivalent (CE) control is simply a zero-order approximation, 
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the dual control is shown to be intermediate (opt imal to linear terms)

between the CE and the opt imal control. It is also understandable why

the uncertainty threshold principle cannot be captured by the dual control,

because it is an effect which is essentially nonlinear (quadratic and higher

order terms) in the covariances. The accuracy of the dual control law for

~~all parameter covariances is quite surprising, as no learning can take

place in this problem, due to the white-noise parameter assumption . In other

words , if the system parameters have mnall standard deviations about their

mean values, we demonstrate by means of a scaler example that the dual. con-

trot is - (to first order linear terms in the parameter standard deviations)

identical. to the white-parameter optimal control law, which involves no

learning. One can argue both weys whether this is “good news or bad news” .

The “good news” is that if the system parameters are not very random, then

the inherent “robustness” properties of feedback, modulated correctly for

parameter uncertainty, require no detailed “learning” of the parameters,

provided that certain “caution” is exercised (this is not what the certainty—

equivalence principle states) . The “bad news” is that the dual cofl trol

algorithm ~~ea not seem to capture the required “caution” effects when the

system permeters are v~~y uncertain and very weakly correlated in time.

By the above comments we do not mean to imply any critici~~t of the

dual adaptive control algorithm. It represents an excellent contribution

to the state of the art in the field of stochastic adaptive control, and

(again loosely speaking) it represents an intermediate approach to the

control of systems with random parameters, somewhere between the case of

perfect parameter knowledge assumptions (the certainty-equivalence case)

and the (unrealistic) case that no learning of the system parameters is

possible (the white multiplicative parameter case). What the authors 
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attempt to do in this paper , by means of the simplest possible scalar

example, is to understand some of the theoretical properties of the dual

control algorithm. Thus, the reader should expect only a relatively minor

theoretical contribution; by no means we imply any superiority of any

stochastic adaptive control scheme that is useful for practical designs.

The entire field of adaptive control has not yet matured to the point that

can provide the engineering designer with useful instructions on how to

realize an adaptive control system.

Another contribution of this paper is to examine the structure of

the stochastic cost to go. In the dual control method the cost is split

into three parts, the deterministic cost, the caution cost , and the

probing cost. One would suspect that the probing part of the cost would

correspond to the active learning of the unknown parameters, and that it

would be zero in this example with multiplicat ive white parameters. How-

ever, the spl itting of the dual cost between a caution and a probing term

f ail s to have an appealing meaning . Both terms combine to yield a sum

of positive weightings of the one-step predictions of the state covariances.

Thus, no distinction can be made between uncertainties that can or cannot

be influenced by the control.

In Section 2, the control problem is introduced . Section 3 presents

its optimal solution on a finite horizon and discusses its existence on

an inf inite horizon, which is governed by the uncertainty threshold

principle. In Section 4, the dual. adaptive control algorithm is applied

to the problem of concern. A closed form expression for the dual cost

is derived and it is proved that it remains finite on an infinite horizon,
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under mild assumptions. In section 5, the comparison between the optimal,

dual and certainty-equivalent law is performed for the infinite-horizon

case. In section 6, the decomposition of the dual cost is examined. Section

7 contains the conclusion.

2. A Scalar, Multiplicative White-Noise Control Problem

The simple discrete—time stochastic control problem which will be

considered here is the following:

x(k+l) a (k)x(k) + b(k)u(k) (2.1)

y(k) ‘ x (k)

The state x (k )  is scaler and perfectly observed, without observat ion noise.

There is also no additive process noise. The time constant a(k) and the

control gain b(k) are unknown parameters. They are independent from one

stage to another; namely, they const itute a white noise sequence. In

addit ion, they are assumed to be gaussian, with means a, b and covariance

matrix

EI a a  ab (2.2)— 
(~ ab Zbb

Therefore,

E{[a(k) —~~J (b ( j )  —~~
] )  = E~~ t

~~Jk

E{ (a (k) —a] [a(j) —a l l = Eaa~ j k ( 2.3)

E{[b(k) —~~
j (b(j) ~~~~ =

where is the Kronecker delta.

The initial state x (0) is known and the cost function is quadratic: 

--
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N-I.
J = E E EQ x2 (k) + Ru2 (k) ] + Qz

2(N) (2.4)
k—O

This stochastic control problem is one of the few which yield themselves

to a closed-form analytical solut ion (4] . On the other hand , its structure

is simple enough so that the dual cost can be expressed in closed-form,

too, at least when the horizon length & is inf ini te .  This makes a com-

parison possible between the optimal solution and the suboptimal solutions

obtained from either the dual adaptive algorithm (2] or the certainty

equivalent strategy.

3. Optimal Control: Finite- and Inf inite-Horizon Cases

3.1 Finite -horizon

Because of the Gaussian character of the random parameters, their

probability distribution is entirely characterized by its first- and

second-order moments. If a and ~ denote the expectations of a and b

• respectively, the optimal control law is found (4] to be the following

linear feedback law:

u0~~~(j )  = — G (j ) x ( j )  (3.1)

where

K(~ +l) (E ab + a b)
G(j ) (3. 2)

R + K (j  + 1) (E
bb 

+ ~~2)

and the scalars K (j  + 1) are given by a backward recursion of Riccati

type: 

-- _ _ _ _ _ _ _ _ _ _ _ _
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— 2  
K
2

(j  + 1)(E 
b 

+

K ( j )  Q +  K(j+ l)(E + a ) — 
a ( 3.3)

aa R + K (j + 1) 
~~bb 

+ b

K(N) 0

The optimal cost is equal to:

J K(0)x
2(Q) (3.4)

Each K(j) can be viewed as a function of Ean~ 
Eab~ 

Ebb
. The deter-

ministic problem, where a and b are known parameters, corresponds to the

values E~~ Eab Ebb 0. It can be verified indeed that , upon setting

the covariances to zero in (3.3) and ( 3 . 2) ,  the solution of the deterministic

linear-quadratic problem is obtained . The certainty-equivalent (CE ) control

strategy consists of replacing the unknown parameters by their current

estimates and then solving the corresponding deterministic control problem.

In the present problem, because of the white-noise property, the best cur-

rent estimates of a and b are their a priori means a and b ,  since no learning

is possible. Therefore, the certainty-equivalent strategy amounts to sett ing

E E~~ E
bb 

= 0 in (3.1) , (3 .2 ) ,  (3 .3) .  It is a zero-order approxi-

mation of K ( j )  as a function of E about Z 0. Intuit ively, the certainty—

equivalent law will become increasingly poorer as the covariances depart

further from zero , i.e., as the problem becomes more stochastic. This is

evidently always so, but it will be seen below that the same remark

applies to the dual adaptive control law as well .

3.2 infinite horizon; the Uncertainty Threshold Principle

When the time horizon N goes to infinity, it can be shown [4] that

the optimal cost 3* need not remain bounded . In fact , a necessary and

k- --- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1:~Ii. •~~~~~~~ •~~ ~~~~~~~~ ~~~~~~ J
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sufficient condition for the cost J~ to go to a finite limit when N -
~~ ~~~ is

that the following inequality between the covariances should hold:

, (E
b + a

~~
) 2

E + a  — < 1  (3.5)aa E
bb +

~~~
2

The left-hand side of (3.5) has been called the uncertainty threshold, and

the property, the uncertainty threshold principle. This is an essentially

nonlinear result , which states that , if the covariance matrix E lies out-

side of a certain reg ion , the asymptotic infinite horizon problem is ill-

posed . This is in sharp contrast with the deterministic problem where,

under mild controllability and positive-definiteness assumptions, the

optimal cost reaches a finite limit as N + 
~~~. In the present problem , those

assumptions are:

b~~ 0; Q > 0, R > 0. (3.6)

It is seen that , for Eaa = E.
b E

bb 
= 0, the left-hand side of (3.5) is equal

to zero , so that (3.5) is satisfied.

- - When the inequality (3.5) is satisfied, the limit of K ( j )  for N -P ~~

is the solution of the algebraic equat ion t-orrespond ing to (3 . 3 ) ,  namely:

—2 K2 (E
ab + a b ) 2

I C a Q + K ( E  + a - 

—2 (3. 7)aa R + K ( Z
bb

+ b

Inequality (3.5) is also necessary and sufficient in order for the

algebraic equation (3.7) to have a unique positive solution [4] . This

solution will be denoted K. It is in fact a function of the covariance

matrix Z:

-1

K = K ( Z )

—-- -~~~ - - - - - - - - _________________ -

~ 
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An alternative way of stating the uncertainty threshold principle is there-

fore as follows.

The nonlinear function K(s) is defined on the region of the space of

E described by (3 .5) ,  and it approaches infinitely as E goes to the

boundary of that region. Note that the asymptotic value of the cost in

the CE strategy is obtained from the value of K ( E )  at Z = 0, just as in

the finite-horizon case.

4. Dual Adapt ive Control

4.1 Expression for the Dual Cost

In this section , we now apply to the stochastic control problem

introduced in section 2 the wide—sense dual adoptive control algorithm

of Tse and Bar-Shalom (1] , (2] . This algorithm consists of approximating

the cost-to-go from step k + 1 on in the dynamic programming equation;

the sum of the cost at stage Ic and of this approx imated cost-to-go , called

the dual cost , is minimized with respect to the control u (k )  to yield

the dual control at step Ic. The approximation of the cost-to-go is

- 
- 

carried out in t~~ steps . In the first step, the enlarged state z(k + 1)

consist ing of the initial state x (Ic) and the random parameter is esti-

mated at time (k+l) f rom the information available at time Ic, and the

opt imal cost corresponding to a deterministic dynamical system is cal-

culated . Thi s deterministic dynamical system is obtained from the sto-

chastic one by setting the random parameters to their expectations.

This step is essentially the application of the CE control , say u0
(j ) ,

from time (Ic + 1) on. It results in a nominal trajectory ~ ) (j )  ( j  >

and a nominal estimate J
0
(k + 1) of the cost-to-go.

In a second step, random disturbances ~ ( j )  (f or j > k + 1) are intro-

duced; they cause perturbations Sz C i )  of the nominal states. The new

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• •~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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trajectory is described by

z(j) ~~(j)  +~~ z (j )  ; (j > k + 1)

Perturbat ion controls c5u ( j )  are exercised so as to minimize the expected

increment in the cost, AJ (~~l). In order to solve that min~.mization

problem, the state perturbation tSz(j + 1) is expanded to second-order

terms in ~Sz(j) and ~Su ( j ) ,  using the dynamical equt ion about the nominal

trajectory ~,(i )  and control u (j). The cost function is also expanded

to second order about the nominal trajectory.

This permits the evaluation of AJ *(k  + 1), the minimum of ~J (Ic + 1).
0 0

The wide—sense dual adaptive control a time Ic, U
d 
(Ic), is then obtained

by minimiz ing over the input u( Jc ) the dual cost Jd
(u (k ) ]

~ 
namely the sum

of the one—step cost at stage k and the approximation of the cost-to-go

from stage (IC + 1) on:

~ E~ Qx2 (k) + Ru 2 (k) + j(k + 1) + ~J*(k + l)IYk
} (4.1)

where denotes the information available at stage k. In the present

problem, can be described by the sequences x(i) (i0 ,l,...,k-l) and

u(i) (i=0,l,..., k—l).

In the problem introduced in section 2 , the enlarged state is de-

fined by

z
Toc) = (x(k) , a(k) , b(k)] (4.2)

Step 1 of the dual adaptive algorithm sets the initial state at

time (Ic + 1) to the estimated value, given the information

x0
(k + 1) = ~ (k + ltk) = ~~~(k) + ~u (k) (4.3)

L - IT±T~: Ili_~. ~~~~~~~~~~~~~
• 
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The deterministic version of the dynamical equation (2.1) is

x(j + 1) = ax0 (j )  + bu0
( j )  (j = k + 1,. .., N —l )  (4 .4)

The nominal control sequence is the opt imal control sequence of the

associated deterministic problem from time (Ic + 1) on:

K ( j  + L ) a  b
u Ci )  = —G (j)x (j )  = — — x (j) (4.5)o 0 ~ R + K ( j + l ) b  0

0

and K (j )  is given recursively by the Riccati difference equation:

— 
+ l)a 2 b 2

K (j)  = Q + ~~ Cj  + 1)a
2 

- —
~~~ — - ( 4 . 6 )o o R + ~~0

(j + 1)b 2

K (N) = 0
0

Equation (4.6) is in fact the special version of Eq. (3.3) corresponding

to E = E b = E
bb 

= 0. The initial estimateof the cost-to-go is given

by: (4 7)

30 (k + 1) (l/2)K0 (k + l)x 2 (k + 1) = (l/2 )K (k + l ) [~ k (k )  + ~u (k ) 1
2

In step 2 of the dual adaptive algorithm, the covariances of the enlarged

state appear , in the calculation of the cost perturbation (k + 1).

The updated covariance matrix of the perturbation Sz (j )  of the enlarged

state z ( j )  given the current information , along the nominal trajectory,

is:
0 0 0

= 
( 4.8)

This results from the fact that the state x ( k )  is exactly observed and

from the white noise assumption on a (Ic) and b (k ) . The one—step pre—

dicted covariance of the perturbation of the enlarged state, along the

nominal trajectory, is

--- -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~ •~~— - - - - - --
~~~~~~ ~~~

-
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~~~~~~
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E° (j+l~j) 0 0

E (j  + lij) — 0 E~~ E b (4.9 )

. 0 E~~ Ebb

where

+ Zaa~
C
oW 

+ 2E
ab
x (j)u ( j )  + E~~u

2
(~ ) (4.10)

and x (j), u Ci) denote the nominal trajectory and control , as obtained

in step 1.

Equation (4.9) also results from the white—noise assumption and the

perfect observation of the state. From the expression for the dual cost

as given in Tse et a].. ( ( 3 ] ,  Eq. (3—1 2)) it follows that

= (]./2)Ru 2Ck) + (l/2)K
0
Ck+1)~~(Ic+l J Ic)

2 
+ p (k+1)~~(k+l)

+ (l/2)tr 
- ~ ~!.

(i)
~~(iIi) 

+ [E(Ic+l~k) 
— 
~~(k+llk+1)1K (Ic+1)

+ .- t (j+1~~~j +1) ]K (j+ 1)~~~ 
(4.11)

In Eq. (4.11) , K Cj )  is a matrix which has the dimension of the enlarged

state. Denot ing the random parameters by the vector

B (k) ( a(k) , b(k) ] , (4.12)

the matrix K (j) can be partitioned as

K
X8
()]

I ex ee I (4.13)
(I ) ~o (I]

1- 

_ _  

_ _ _ _ _ _  
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It turns out [3] that

K~~(j) K (j) (4.14)

where K (j) is the solution of the Riccati difference equation (4.6).

The matrices K’~~( j )  and ~~~(j )  can be obtained from recursions [3] once

the sequence K~~~(j )  is known . The vector ~ ,Ck+ 1) is zero in our example

because we deal with a regulator , not a tracking problem. Also, E(k÷lIk) ,

the one—step predicted covariance of the enlarged state at stage k, is

H given by (4.9) with j =k , since

x (Ic+lJIc) ~~ x (k) + ~u(k) (4.15)

In eq. (4.11), the matrix W ( j )  has the following structure (see [31 ,

Eq. (3. 17)) :

fQ 
V
1 V2

w C j )  = J v 1 0 0 (4.16)

0 0

The exact definition of V1, V2 is unimportant in this example, - be—

cause
(4. 17)

([Q Vi V2] fo 0

• t r (w ( j )~ C j j j ) ]  = t rf lv1 0 o J J o  Z~~ Eab J~ 
0

~j~~2 0 oJ [~ E b E
bb] )

On the other hand ,

E~~~Cj + 1 jj )  K~~~(j+l) 0 0

tr~K ( j +1) [Z ( ~ +1~~ ) — E (i~ i)]
’
~ç

= tr [ : :
= E

0 ( j + ] . lj )K XX (j +  I.) = E° (j+1!j)K (j+l) (4.18)

I 
- - -.- - --- - — . 

_ _ _  

. .-  ——— ---•- -- —— —-
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— 
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From Eqs. (4.11), (4.14), (4.15), (4.17), (4.18), and the remarks just

made , it follows that the dual cost is given as follows in our problem.

Jd
[
~~

k)l (1/2)Ru2(k) + (l/2)(~x(k) + ~ u(k)]
2
~~ Ck+l)

N—i 
(4.19)

+ (l/2)K (k+l)E~~ (k+ 1~k) + (1/2) 
- 

L K (j+].)E° (j+i~j)
- - j =k+l

4.2 Infinite—Horizon Case

It will now be shown that , under the same assumptions which guarantee

the finiteness of the certainty-equivalent cost over an infinite hor izon ,

the dual cost too remains bounded . Therefore , there is a qualitative dif-

ference between the dual adaptive control and the optimal control in the

infinite--horizon case: the former does not obey the uncertainty threshold

principle , which governs the latter.

Controllability of the deterministic dynamical system (4.4 ) is

equivalent to the property that b ~ 0. Under the assumptions (3.6)

• (b ~ 0, Q > 0, R > 0) ,  it is well known [81 that the solution K0 ( j )  of

Riccati recursion (4.6) reaches a finite positive limit K as N +

Hence, if u (j ) ,  x (j )  are respectively successive controls and states

of the certainty-equivalent strategy,

N—i 2 2Urn E [Qx2 (j )  + Ru0 (j ) ]  = (l/2)i~ x (k+l) < + (4.20)
N4~° j—k+1

According to Eq. (4.19), we must prove that

N—i
Z ~~~(j+i)Z ° (j+l~ j )  remains bounded as N + 

~~~. From Eqs . (4.5 ) and

(4.10) ,

~_i j
~:i~. ~~~; r~I± ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _
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(4.21)

~~~+1
Ko Ci+1 E

~~~
i+11i) = 

j :k+1 ° 
[E aa

_2 EabGo
(
~~

) + E
bb

G2 (i) x~~
C i )

In fact , both K( j + 1) and G (j )  depend on N: let us emphasize that

dependence by the notation K (j +l; N ) ,  G (j ;N )  . Clearly,

~~~(j + l; N) < K
0
Cj; N) (4.22)

since the left—hand side defines the min imal cost on a shorter horizon .

From Eq. (4.5),

3G
0

( j)  a b R

~K0(j+i) [R+K (j+l)b
2 ~2

Accordingly

- 

- aG2 (j ) ~G (j) R(ab)2 K (j+l)

— 
= 2 G (j) 

— 
= 

— _ 2 3 > 0
aK0

(i+l) ° 3IC Cj +l) (R + K
0
Cj+l)b ] —

whence it follows that , also,

G~ (j+1;N) < G ~ (j ;N)

or

1G0(l+1;N) I < ~G (j ;N ) l (4 . 2 3 )

From (4.22) and (4.23),

K (j+l;N) 
~.
Ko

and

IG (i+l;N) I ~~. I~3~j )  

*-•—- . _ _  
_ _ _ _  

— -
•

-~~~~~~~~~~~~~~~~~~~~~~~
- - - - —

~~~~
--  

-

~~~~~~~
-
.

-
~~~~~ - .~~~~~~~

--

I - - - - - - —_“-- -
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where G is obtained from K by the same function which yields G0(i)

from K (j). (Eq. (4.5)). On the other hand , E, as a covariance matrix,

is syimnetric and positive semi-definite. Therefore,

(Eaa
_2E

ab
G
o
(l) + Z

bb
G
~

(l ) ]  < a(G~~(j )  + 1] (4 .24)

where ~ is the largest eigenvalue of E. As a result,

N~~~ l 

~~~~~~~C j+l )  E
~~~~~~~ ( j+ 1I j )  < K

0c7(G~ + 1] 
N~ l 

x~~( j )  ( 4.25)
j—k+l j=k+l

However,

IN-i 
2 1

Q lim E x (j )I  < him E (Qx2 (j )  + Ru2 ( j )]  1/2 K x2 Ck+l) < +
N4~~° [?=k+l ] N~~ j k+1 °

Since Q > 0, it follows that

N-l 2him E x (j) < +

N-~° j=k+1

and therefore, the left—hand side of (4.25) remains finite as N + 
~~~ .

A consequence of this observation is that there will be an important

discrepancy between the trajectory resulting from the application of

the dual control, and the optima]. traj ectory , for the range of covariances

which do not obey the inequality (3.5) of the uncertainty threshold

principle. This qualitative difference is confirmed by a quantitative

comparison in the next section .

5. Comparison between optimal and dual control in the infinite—horizon
Case

From the expression (4.19) for the dual cost and the knowledge that

it remains botnded on an infinite horizon (section 4.2), it is possible

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_
~~~~i_ 

- - - --- -  

•.- 

~~
-_ _ _ _ _ _

~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~— -~~~~— j 
— 

~~~~~~~~~—

. 
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to obtain a closed-form expression for the limit of the dual cost when

N goes to infinity, in terms of the various problem data and the limit

of the solution to the Riccati recursion (4.6). This in turn provides

a closed—form expression for the dual adaptive control, which can there-

fore be compared with the optimal control as given by Eqs. (3.1), (3 .2 ) ,

(3.3). Let

a(j;N) ~ ~~ (j+l;N) E° (j+1~j) (5.1)

We are interested in evaluating

N
L him E a(j , N) ( 5 .2)

N~~° j—k+l

To that end, we use Eq. (4.22), and the stability of the closed-loop

dynamical system of the certainty-equivalent strategy. Namely,

x (j+l) ~0
(j)x (j) (5.3)

where

~~~(j )  
~~~~~

_ b G  (j )  — 
—2R + K

0
(j+l)b

it is known [8] that, under the assumptions (3.6), the asymptotic closed—

loop system is strictly stable:

• 
1 1R

1~~I 
— limI~0(j)l — — 2  

< ~~ (5.5)
RI~K

0
b

From eqs . (4.2 1) and (5.3),

1—1
a (j , N) a K (j+1) (E —2Z G (j) + E G2(j)] fl A

2
(i)x2(k+1) (5.6)o aa a o b b o

_ _ _  

-
~~~~~~~

- 
- -

— — ---~.———I---- - — —- -.- —. )I~l;-1~~~
’ .- ~~~ :

~~~~~ Ik~~ —— - -  - -  - 
a ~~~~ -.
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where, in fact , K (~+l) K (j + 1;N) , G ( j )  G ( ~ ; N ) ,  A ( i) — t~~( i ;N ) .

However,

N I m  N 1
L — him E a( j , N) — him E a(j,N) + E a (j,N)f

N-’~~~ m lc+i ~: Li-~~~ 
j an~I-]. J

for any in C £k+l,. . . ,N—1}. Therefore, also,

u r n  N 1
L him him E a(j ,N) + E a(j,N)I

N- ~= Li~~~l j —m+l J

But, it has been shown in section 4.2 that

N
him E a(j,N) < + °~ for all k
N~~- j —k

Accordingly,

r N 1
Urn ~1im E a(j,N)I — 0
~~~ ;— L~~ 

j ”m+l J
and

m r i n  1
L — Urn lim E a(j,N) = u r n  I £ him a( j ,N) ( 5.7)

m~0 N4~ jak+1 ~~~~~ Li”k~1 N~~~~~~ J

From (5.6) , using the convergence of K(j+l;N), G(j;N) and D (j;N), it is

concluded that a(j,N) goes to a limit as N-’~ , and

him a (j,N) — ~ — 2 E G + Z G2]~~
2
~

1
~~~~~~x

2 (k+l) (5.8)
o aa a b o  b b o

where

K a b
0

~~~ R + K
0

b
2

Accordingly,

±~~~
ii: i-;

~
i:i -:i_ T
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L - i IE - 2 Z G + E G2 ) x2 (k + 1) him ~~ ~2(j-l-k)
0 aa ab o bb o 0 m-~~ j—k+l

1-A2 ~~aa 2 E bG + Zbb
G
~~
]x
~ (k*l) 

(5.9)

where the second equality results from I A I  < 1.

In stmm~ary, taking into account Eqs. (4.3), (4.19), and (5.9) , the

asymptotic value of the dual. cost is arrived at:

~~~~ 
= ( h/ 2 )R ~?( k)  + ( l/2 )K [a x (k )  + bu(k)]2

+ (h/2 )Ko [E
~ aX2 Ck) + 2E

b
x(k)u(k) + Ebb

u(k)] (5.10)

go 2 - - 2
+ (1/2) [E — 2G Z + G Z ] [ax (k ) + b u Ck ) ]

I-A
2 aa o a b  o b b

The minimization of the asymptotic dual cost (5.10) with respect to

u (k) yields the stationary dual adaptive control Law, Ud ix (k) 3 .

I
~
E
ab 

+ ~~ + 
~~~~~~~ 

(Eaa
_ 2G

o
Eab 

+ G2E
bb
)]a

~ 
(5.11)

ud Ix (k) ] a - _ _ _ _ _ _ _ _- x (k)

+ 

1-A
2 

(E
~~

_2G
o
Eab + G~ E

bb)] 
+

Comparison of Eq. (5.11) with the asymptotic version of the optimal con-

trol law (3.2) evidences a similar structure. However, the limit of

K (j+l) as N4~ which occurs in (3.2) — if it exists - is the positive
solution of Eq. (3.7) - if it exists; that is, K(E). Recall that that

limit exists if and only if E lies within a region defined by Eq. (3.5) .

In contrast , the parameter 
~~ 

which occurs in (5.11) is always defined,

finite and pocitive, and

K ~~(Z) I (5.12)
0

• - 
•~~~~~~~~~~~~~ - 

•- -~~~~ ;_ ~~~~~~~~~~~~ -~~~~~~~~~~~~~~~ _ -~~-
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From Eq. (3.7), the gradient of K ( E )  with respect to E , evaluated at E=O ,

can be found (see append ix) , and the resulting first-order expression of

K(E) about S=0 is accord ingly found :

a KT
K )  = + 

~y— ~~~~~ 
o( Z) (5.13)

and

~~T 

~~~~~~~~~ 

aa
2G
o
Z
ab 

+ G2E
bb
) (5.14)

Hence, the expression between brackets in (5.11) is recognized as the

first-order expansion of K (Z)  in Z about Z =  0. Note that , from (5.14) ,,

a T
(K + 

~~
-
~~~

— (Z) I E] is posit ive , regardless of the value of the covariance

matrix I. This follows from (5.14), the f act that K > 0, 1—A 2 
> 0 and

the positive semidefiniteness of Z . The stationary optimal control law

(from Eqs. (3.1) , (3.2)) exists in the neighborhood of E=O (becauoe E 0  satisfied

Eq. (3.5) and by continuity) and can also be expanded to first order in

Z: 

U
OPT CE) = u

0~~ 
(0) + 

(9
~~PT 

10 

+ 
9:
OPT ~K 

T 
Z + o(Z) (5.15)

where both the direct dependence of ~~~~ on E and the indirect dependence

through K(E) have been taken into account. It follows from (5.15) and

(5.13), (5.14) that

- 

- ) - u~~~ (Z)  = o (Z)

or

I~1a (Z) - u  (
~) I -

11111 = 0 (5.16)
I —I

j—.______ 
- •~~~~~~~~ — — -— 1’4 
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where [ ~j  I is the euclidean norm , for instance. (See the appendix for

a proof) .

On the other hand , the approximation is no better than the first

order. Indeed (see appendix), the second derivatives of u
0~~ 

with respect

to Z involve the second derivatives of K(E), evaluated at E—Q, which are

not present in the dual u~. Therefore, the stationary dual control (on

an infinite t ime-horizon) is the first-order approximation of the optimal

control, as a function of the covariance matrix Z , about the numerical

val~j.e LaO which corresponds to a deterministic problem. It has already

been pointed out ( section 3.1) that the certainty-equivalent control is

a zeroth-order approximation, in the sense that

U~~~ (~~~) 
a ‘2OPT ~~~~~ EaO

This is apparent from Eq. (4.5). Thus, the result of this section shows

that , in our particular problem and for an infinite horizon, the dual

control performs better than the CE control, but less well than the
- 

opt imal one. The accuracy of the dual control can be quite high for ~~all

covarianceg, which is somewhat surprising in view of the fact that the

paraneter cannot be learned , due to the white -noise property.

When the parameter covariances grow large, however, the discrepancy

between the dual. and the optimal control can become substantial . Thi s is

conf irmed for instance by the considerat ion of limiting cases. Assume,

for instance, that a and b are uncorrelated, with the variance of a

• being fixed. For E
bb~~? K ( E ) goes to:

iqt
aa —2

1 — a  Z

_ _  _

r — 
—

~~ ~~~~~~ ~~--~- ~~‘~- —~ —- ~~~~~~~~~~ —~~~~

--~~ - --.--—~~~~~~~~ • —  -- 
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r - as is apparent from Eq. (3.7). The inequality (3.5) to be satisfied by

the covariances is

E

The optimal control law (3.2) goes to zero when Ebb 
goes to Ln.finity.

This is an example of caution effect: the control is inhibited by un-

certainties that it cannot affect. In constrast, the dual control law

u
d
(k) goes to a finite limit

——a bh im UA (k) — 
, x (k)

‘1 Z ~ —2 (1—A )
bb b +  2

G
0

Hence, one can say in that case that the dual law is not cautious enough.

The f it can , however, somet imes be better , even at large values of the

covariances. For instance, in another limiting case where a and b are

still uncorrelated, but E~~, remains fixed and E 9 ~ , both laws have the

• same limit:

him U (k) u r n  ud (k) 
a - L.x(k) .

-
~~~~ 

OPT baa

6. Decomposition of the Dual Cost

A decomposition of the dual cost for the general discrete stochastic

control problem with quadratic cost , 1 near dynamical equations and

linear evolution equation for the random parameters has been proposed

in the literature (5 1. This decomposition split s the dual cost into a

deterministic term, a “caution” term and a “probing” term. The de—

• 

~~~~~~~~~~~~~~~~ 

.

~~~~~~~~~~~

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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terministic term (k) represents the value of the cost-to-go corresponding

— to the certainty-equivalent strategy, namely, it depends on the unknown

coefficients only through their current estimated expectations.

The caution term (k) is supposed to reflect those uncertainties

that the control at stage k cannot affect directly, although it can

affect their weightings. Those include the one-step predicted covariance

of the enlarged state at stage k , and the covariance of the noise of

the enlarged state.

The probing term J (k) contains those uncertainties which the control

at stage k can influence; those include the future updated covariances.

In our problem however, the updated covariance matrices of future states

are all equal. to the a priori covariance matrix of the paramters a, b,

because of the white-noise property , so that they cannot be influenced

by the control . The various components of the dual cost are as follows

( 5], [6] :

- I JD~~
c) a (h/2)R u 2 (k) + (1/2)(~~c(k) + bu (k) ] 2K ( k+l) (6.1)

= (l/2)~~0(k+l) E~~~h Ik 
+ (l/2) Z tr (K

~~ 1
E
~~~r) 

(6.2)
jak

and J (k) is given (5] as a function of and K~~1, for j  a k+l,...,N-l.

The dual cost is the sum of the three terms:

+ J (k) + 3 (k) . (6.3)

Using the recursions (3] satisfied by K!~1, and Eq. (4.10) for E~~~(j+hIj),

it is possible to verify that (6.3) is consistent with (4.19). However,

the caution and probing terms combine, in our example, to yield:

_ _ _   
_ _ _ _

_ _ _ _ _ _ _ _ _ _  _ _ _  

- &~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ •~~~•-~~~~~~~ -~~~~ -~~~



— - • - - - — p-- ~~~-rw .-y,~r m —

~~1

-24- 

N-i 
(6.4)

J (k) + 3 (k) = ( l/ 2 )K (k+ l)E  (k + l j k )  + (1/2 ) ~ K (j + l) ~~~
0 

( j+ l~~ j )C p 0 XX 0 XXj=k+l

In view of Eq. (4.10), it is clear that the control u(k) can affect both

Z (k+ljk) and ~
° (j+l~j), for j > k+l, but it cannot affect the

coefficients K (i) (i=k+l,...,N). Hence, the decomposition into (6.1)

and (6.2) does not seem to have any intuitive appeal in the present

situation.

Perhaps, another splitting of the cost ~~uld be more appropriate,

where the nondeterministic part of the cost, 3
d~~~

3
D

’ ~~uld be expressed

as the sum of one term which corresponds to the open-loop feedback

strategy [7], and the difference.

In conclusion , it seems that , even though the dual algorithm is

— very near optiinality for small covariances (Section 5) ,  its action cannot

be explained by the decomposition between probing and caut ion in the

present scalar example.

7. Conclusion and Suggestions for Future Work

The mot ivat ion for this analysis has been the desire to gain more

insight into the behavior of the wise-sense dual control algorithm [11,

(2], whose available results so far arise from simulations. Those

results are, of necessity, qualitative rather than quantitative because

a comparison of the adaptive control with the optimal control is usually

impossible since the latter is unknown . An attempt towards the quanti-

zation of some desirable adaptive features possessed by the dual co!ltrol

probing and caution - was made recently [5] , by splitt ing the dual cost

into component terms which each are claimed to account for a particular

effect.

p ..— —
- -—— ~~~-~~ - 
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The approach that we have taken here has been to concentrate on a

special discrete stochastic control problem (quadratic cost, linear

dynamics, multiplicative guassian white noise with perfectly observed

state) where the optimal control is known . The special nature of the

problem makes it possible to evaluate the dual control, too , in closed

analytical form, at least for the inf inite—hro izon case . This permits

a thorough comparison with the opt imal control , which reveal s (1) that

the dual control does not share a fundamental property of the optimal

control, the uncertainty threshold principle; (2) that the dual control

approximates the optimal control linearly in the covariances of the

random parameters, for mnall values of the parameter covariances.

Since no learning can occur (because the parameters are white—noise) ,

one would expect the probing term in the dual cost to vanish. This is,

however, not the case. Instead , probing term and caution term combine

to yield a positively weighted sum of the one-step predicted covariances

of the future states. This observation makes one doubt the usefulness

of the splitting between caution and probing terms in general , as w~’ -

as their intuitive meaning.

Also, alternative decompositions of the dual cost should be in-

vestigated. Ideally, one term should correspond to the certainty-

equivalent control law (this is accomplished by the deterministic term);

another term, to the open—loop feedback law, and the remaining term would

account for the learning characteristics of the algorithm.
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9. Appendix

We shall establish equations (5.14) and (5.16).

1. Proof of Equation (5.14)

Equation (3.7) can be described abstractly as

F (K ,E) = 0 (A.l )

Hence , if K(E) denotes the positive solution, the following is an identity

i n E :

F[K(E),E] a o (A.2)

Upon differentiating (A.2) with respect to Z about ~ a o~ one obtains:

(~f) 
T 

+ 

(
a!. ) (

~
)‘
~ 

a (A.3) H
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whence

(~ F \ T

(A.4)- 
-

The numerator and the denominator in (A.4) are now calculated . From
( 3 . 7 ) ,

2 — — 2K(E , + ab )F (K ,~~) a Q + K( Z + a 2) - — 

—2  
-

-J R + K ( Z
bb + b

Denominator of (A.4 )~

—2 K (E
ab + ab )

2
[2R + 2 X (Z

ab + ~~2 ) IC (Z
bb + ~~2 ) ]

~— (K, ) a Z  + a  - 1 - — —— aa

Therefore ,

- 
K~~~

2
~~

2(K ~~~~ 2R) ~~2 - 1 - [(R + ~~~ ~
2~2 - R2]\ 3 K / o 

(R+K ~~
2 )2 ( R + x ~~~

2 ) 2

2 2a R  2 (A.6)
-
~~ 

~~~~~~~~~ 
—~~~~ - 1

( R + K ~~~ ) 
-

where the last equal~ty results from (5.4), (5.5).
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hence

(aP
) 

~ (A.8)

— 

K3 (E b +

-

‘ ~~bb. IR + K (Zbb +

(
~

) ~~-2 
)

2 
( A.9 )

= 
-2 K

2
(E
ab 

+

~
Eab R +K (L~,

+ b 2
)

j~J’ \ = 
-2 (A.lO)

\~~abf° R + K b 2

Accordingly,

2 I C a b E  2— 2 —2
T E = [~ 

- 
ab + 

K a b z (A.ll)

~~ (R + K b
2
) ( R + K b

2 )
2 bb

K (E - 2GZaa ab bb

where Eq. (4.5) has been used . Thus , (5.14) results from (A .4) and

• (A.6) , (A.ll) .

2. Proof of Equation (5.16)

: The optimal control gain (3.1), (3.2) is a rational fraction in

K (t ) , more specifically a function of the type

A + BK (Z) + (c
T
t)K(E)

u CE) — 
— x (A .12)
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On the other hand , the dual law is expressed by ( 5 .L )  as

A + B(K(O) + x 1 (0)T~] +

U Q) — 
T T 

— Z (A.l3)
d 

A
1 

+ B
1

(K ( O )  + X ’ ( O )  ~] + c
1
ZK(O)

where 

(0)

with the same coeff icients A, B, c , A1, B1, c1 as in (A.l2). Comparison

of (A.l2) and (A.l3) shows that, in (A.13) , both the numerator and

the denominator of (A.l2) have been replaced by their first expansion

in E about 0. It follows that (A.l2) and (A.13) have the same first-

order expansion in E about E 0.

tn effect,

A + B K ( O )u (0 ) = u ( O ) = x
OPT d A1 + B

1
K(O)

and
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j3u~~ 

— 
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. / 

0 \~E Jo [A
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1
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1
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